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We study the diffraction of small amplitude waves arriving from infinity to impinge on 

an immovable, rigid dock of finite width, situated on the surface of Uqnfd of depth h. 

We use Jones’ method to obtain the velocity potential. The normal and the oblique inci- 
dence of plane waves on the dock are considered. Coefficients of reflection and transi- 

tian of the incoming waves are computed for the ease of the normal incidence under the 
condition that the width of the dock is large compared with the depth of the liquid. 

The plane problem of diffraction of the surface waves at a dock of finite width was 

dealt with by John [T] from the standpoint of the shaifow water theory, and by Holford 
fz] for the waves on a liquid of infinite depth. 

Several papers [3-61 deal with spatial wave motions of a liquid in the presence of a 

(rigid or elastic) dock occupying a halfwplane of the free surface, In g. 83 the case of 

a totally submerged dock is investigated. A variant of the Wiener-Hopf method [9] is 

used in [3-81 to solve boundary value problems which the velocity potential of the wave 
motion of the liquid must satisfy. 

2, A dock forming a rigid obstacle of width 2~. is situated on the surface of liquid 

and Occupies the part of the free surface defined by 1 z 1 ( a, - cb < z < 03 . The 
coordinate origin is situated at the bottom and the y-axis points vertically upwards. 

A plane wave F@I (x, y z fj ~ f) oh coy Re e-i f&z-xx-4 (xx = ~~2 _ k.f I I 
moving from infiiity in the negative direction of the C&-axis is incident upon the dock 

at a certain angle. Here f i& are the roots of the equation p cog Ch Jr sin Ch = 0. 
The velocity potential F (5, y, zI ;t) describing the motion of the liquid due to the 

incoming wave F(O) (5, Y, Z, C) sbould satisfy the Laplace equation AF (cc, y, z, t)= 
=: () in the region occupied by the liquid and the following boundary conditions: 

a2F/w+gaFmP=O for y=h, \%/>@I -~<z<oo 

Mf&=O for y== h, lsl<a, --~<Z<~ 

i?Fji3y=O for y=O, -~<~<w~ -w<z<* 

The motion of liquid should satisfy the carresponding conditions at infinity and near 

the edges of the dock (-& a, h). The tatter condition is equivalent to the requirement 

that aF / at be bounded at the dock edges. 
Punction F (5, y, z, t) is sought in the form 

F (5, p, Z, t) = Rs {[rp (5, y) + D ch cOye-*xxI ei (kz-wS)) (14 

For ‘p (5, Jj) we obtain 

&p--kkaq,=O (0 6 Y Q hs --m <s:<w1 

aqmPPPrP=~ for ysh, ]%]>a @====“%/gl V-~~ 
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dcpJIay= - DC, sh c&e-~x* for y = h, I I 1 <a 

acp/ay = 0 for y=O, --oo<x<oo 

/‘rp (5, y) { < M t= cot& for r= v(rTa)S+(y-h)” 40 

(cont.) 

limcp (2, y) =T D, ch CoyeiB~~r lim cp (5, y) = II_ ch Coye-i%* 
aYe %T-‘--(Y) 

61 = a, - if_, 6* = cr, + iz,, z <fA z+.> 0 

In the final result T-and 7, both tend to zero. 
Applying the Fourier transforn~atio~s to the problem (I. 2) and utilizing the notation 

ap_ (a, y) z!E jaql (z, y) eil (x+*)dz, 7% = aa + ka 
--m 

we obtain the following functional equation: 

@+ (u) eiQa + CD1 (a) K (a) + e-iKa@_ (a>= - ~~~~h~~~~~~~~~ ia _ xi 
--Ic)ach@ (1.3) 

z=3+iz, T_<7<z+, -m<<a<m 

Here rt>, 1%) ts an entire function, K (a) is regrxiar, cft, (a) is regular in the semi- 
&me ‘G > z_, and @_ (a) is regular in the semipfane z ( z+ 

2, We use the approximate Wiener-Wopf method IJO] to solve (1.3). 
\ I 

We factorize [3-X01 the function K (a) = K, (a) K_ (a) 

Here * poJh and f ip,,& are the roots of the equation pshph - Pchph = 0, 
and fin = IUC + @hfnrs for n>1. 

Mu~ri~lying (1.3f by [&=a K+ (a)]-r and by ]e-iaaK_(u)]-X , and using 

CD, (01) e-i2a 5: S_ (a), CPl (61) eiGa = S, (a) 

we obtain the following two equations 

One equation is obtained by taking the upper sign,and the second equation by taking 

the lower sign, The first equation applies within the limits z_ <‘G (0, and the 
second equation within the limits 0 ( z < t,+* 

Taking into account the edge conditions (1.2> and applying the partition theorem 
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( 193 Sect. 1.3) together with the Liouville theorem to the above equations, we obtain 
tW0 following integral equations : 

(2.1) 

DC0 sh Cc& 
cd-i/zfz 

T 
s 

eTiEa sin (f - X) a ch qhdc 
= ni 

-co+i?F 
Q(C;)Wh rlh--Pch’~~l(F--~)(~--~! 

Choosing 1 and m from (O,z+) , setting C+ = -C_ = I, f+ = f_ = m, replacing 

5 by - E and a by - a in the relevant equations of (2.1). we obtain 

0* (* a) 1 ‘* O3 e2iEa0F ($5) 

K, (~1 
-7 

2nr s 
il-co 

K(E;)(4+@ “= P-2) 

DC,, sh Cob = e’@ sin (t; * x) a ch r$z& 
ni rr_(5)Aahrlh--ch?~)(~j=x) @,+a) 

In both of these equations z> sup (- 1, -m). We next introduce the functions 

G++ (a) = @+ (0) - @_ (--a), G+- (a) = a?~ (0) + m_ k-0) (2.3) 
which are, in accordance with (2. a), the solutions of integral equations 

G+‘(a) k 1 
K+ (~1 2ni (2.4) 

= DCoshC& 
im+az 

s 

8” ch qh rsin(c+x)a 
rli 

in+CO 
K_(f)(rlshqh-pchqh)(E+a) E+x 1 

-+ sin;&:;) a] dE 

In (2.I)and the follo~ng expressions the symbol h assumes respectively (+) or (-) sign. 
Taking into account that 

Irl+ ta) K- ta) = r $, ;zsh;;h T& 

we can write (2.4) as 

The singularities of the integrand functions are poles 

E = ik, iv,,, p,, = [ks + n2n’ ,’ h2]‘ig (n = 1, z,...) 

Using the residue theory, we can write (2.5) in the form 
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seningnow 65 = ik, ipj lj = ti,,Z,*-) I in (2.6), we obtain at these points the fol- 
lowing infinite algebraic systems for G+h (a) : 

which are fully regular, when 
(2.7) 

GW 

Le. provided that the sum of the mod& of the coefficients in each row is less than 

unity (Ill-j. 
The relation (Z,8) can be regarded as the condition defining the values of a / h, for 

which the systems (2.7) are regular, i.e. limiting value of the ratio [f / & up to which 
the systems are fully regular can be obtained for each particular case. 

When the condirions (s, 8) hold, the systems (‘2.7) are fully regular and their free terms 
are bounded. Consequently they have bounded solutions which can be obtained using the 
method of consecutive approximations 1111. 

Having solved (2.7) and using (2.3). we can find (p, (a) and @_ (a). 

8, Let us limit ourselves to the case 24 / h > 1, i e, assume thar the width of the 
dock exceeds the depth of the liquid, The (2.6) yields the following expression for 
G+h (c&f: 
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fn this case (2.7) yields the following expression for G+A (ik] : 

G," (ik) = - “co ih ‘Oh [& + i!$$ K, (ik)]-l{K+kfk) c”inj;;xx) u -+ 

Then, taking into account (2.3) we obtain the following expressions for @, (a) and 

@_. (4 : 
aP, (4 = 

_ iK, ta) {e;; 2::’ [ fj G++ tik); G+- (ik) e...ka +. 

Applying the inverse Fourier transformation to (1.4) and taking into account (3.2) 
and (3.3), we obtain the solution of the problem (I. 2) in the form 

l)for s< --a 

_ DC, sh C-h sinr(f-_;) a] _ iDCo;h COG i K, (@,,I I eixa ) 
n=l h (Iln -VP) ‘e4n - 2s 

(3.4) 

2) for 121 <a 

cp (x, y) = 2DCoh sh C& 2 
n=1 

,-ka 
- 56 sin (ip,s -/- xa)] cos y + Ich 

{ 
~[G,+(ik)sh~~+G,-(ikfehkzl + 

-I- - [k cos (i/m + xa) - x sin (ikz +%a)]) - De-ixrch Coy (3.5) 

3) for 56 > a 
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Let now Z_ and Z, both tend to zero. Taking into account (3.4). (3-Q (3.6) and 
(1.1) we obtain the final expression for the velocity potential, respectively. for the 

departed wave, for the motion of the liquid under the dock, and for the reflected wave, 

4, The case of normal incidence of the waves upon the dock (k = 0) must be con- 
sidered separately for the following reason.The passage to the limit k -+ 0 is not pos- 
sible in the solution obtained because for a = &a double root appears in the kernel 

K (a) = 
ushah 

aahah-f3chah 

of the functional equation (1.3). This violates the regularity of K (cl) on the strip 

x_ <T <z+, - CQ <u <m and K (~)=K~{a)K_(u) cannot be factorized in such a 
manner that K+ (a) and K_ (a) are both regular and have no zeros within this strip. 

We can overcome this difficulty as follows, The kernel K (a) accompanies on the strip 
defined above the unknown entire function @t (a) as its coefficient; we can therefore 
relate as to 4$ (af and write the functional equation (X,3] for this case in the form 

eiaa@+ ta) + %* ta) 
sh ah 

Q (a sh ah _-B Eh ah) i- e-Qa@_ (u) = 

= _ 2~Cosh~~ain(a-~)uch ah 
(ashah-fSchah)(ot-x) ’ a$* (a) = ff%R~ (a) 

Factorization of K* (a) yields 

j-pofh and -&z&/h areroots pthph=P 

Equations (2.1) can ROW be written as 
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cc+i+ 

rrt DC0 sh C& eTiEa sin (F, - X) u ch F,hdE 
= ni s K** (4) (5 sh @ - P ch V) (4 - x) (c - ~4 & 

- @J+q 

where B, and B_ are constants to be determined from the bounda- conditions [9]. 

Assuming 2~ / h >> ‘i , we obtain the following expression for G,h (a) for k = 0 : 

G,'(u) = .K+* (a) {B+ f B_ - DCoshCoh 2 innyah K,” ~~) X 
n=l 

=F 
&ca 

inn-xxh 

Repeating the multiplications performed previously, we obtain the required solution 
in the form 

~(‘1 (r, y, t) = 1 (z’, + if?,) 9, (- 6) ] ch Coy ~0s (xx - 4 + 

-t g 1 (T, -t_ 22,) 9, (- ivp) 1 cm YpEI ax3 d 
p=1 

PC21 (5, y, t) = 

where 

+ fFjI(T, fiRp)g_(ivp)~e”prcosv,~~os~t 

To -j- iRo = 
i@oewiaa 

6” (Ph - pS/z~ + pd”) ch po K+* (6) ’ %=Pdh 
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B_= D & Cob {Co 5 K+* (F) [i,;z”,, - e*ya 
ixh + n3t 

] - 2K,* (0) ‘y} - B+ 
It=1 

The coefficients of reflection and transition of the waves are given by the formulas 

I(~o+~~o)~+c--6)1 
D 

, 
+_= (To+iRo)Q-(~) + 1 

I 
D 

where 1 F(l) I, 1 F@)l and 1 F(O) 1 denote the amplitudes of the reflected, departed and 

incident waves, respectively. 

The pressure of liquid under the dock is given by 

P (5, Ys t) = - p 
a@) (5. y, t) 

at - WY 
Computation (in MKS system) of the pressure distribution along the s-axis for the 

parameter values 

D = 0.25m2/sec, h =Im, a =dm, a = 4.34sec’-1,~ =dm”, t =lsec 

gave the following results: 

.x = -2-1 0 12 
p= -jO 0 67 144 230 

These data indicate that the pressure change is larger near the right hand side edge, 
i.e. the dock dampens the waves. In this case ft = 0.5 and f, = 0.86. It should be 
noted that according to the results of fl] the pressure under the dock varies linearly, 

while the pressure distribution investigated in the present paper is nonlinear. This is 
explained by the fact that in the present paper we consider the hydrodynamic pressure 

as opposed to the hydrostatic pressure in [I]. 

The author thanks A. A. Kaspar’iants for his constant interest and guidance in this work. 
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The propagation of small-amplitude waves is investigated in an incompressible visco- 

elastic fluid, the rheological behavior of which is described by a nonlinear differential- 
operator equation of state. 

Waves in a linear viscoelastic medium have been discussed in detail in TJ, 21. In this 
paper, we consider the models of Oldroyd [3] and de Witt [4], and the generalizations of 

these models for the case of the finite spectrum of the times of relaxation and retarda- 

tion. For the stated models an invariant formulation is adduced for the conditions of 
evolutionarity of a system of hydrodynamic equations. Possible types of short transverse 
waves are esteblished for media which possess transient elasticity. The phase polars and 
group polars of a point source are considered. The local characteristics are adduced for 
high-frequency transverse waves in the case of reflection and refraction at the boundary 

of an Oldroyd fluid with a linearly elastic solid. 
Small perturbations are considered for the presence in the fluid of a stressed state which 

is different from the hydrostatic pressure. 

1. Formulation of the condition, for evolutionrrity of the 
hydrodynamic equotlonm of model, po6aea#tng a finite let of 
relaxation and retardation times. The system of dynamic equations for an 

incompressible viscoelastic fluid consists of the equation of continuity 

div v = 0 (1.~1 
the equations of momenta 

pdv]dt = -Vp+divT+# (1.2) 
and the tensor equation of state 

Pr (;) T = 2rlQs (g) E (I.31 

In Eq, (1.3), T is the tensor of “viscoelastic” stresses, E is the tensor of the rare of 
deformation ; P,(D I D t) and Q, (D / Dt) are differential operators representing poly- 

nomials of DIDt 

p,(++&+&;). Qs(;)=4h(i+e&) (I.41 

The quantities hi and 8 i form relaxation and retardation spectra, respectively. The 
symbol DA/Dt denotes the relative convective derivative of the tensor A defined by 


