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We study the diffraction of small amplitude waves arriving from infinity to impinge on
an immovable, rigid dock of finite width, situated on the surface of liquid of depth A.
We nse Jones' method to obtain the velocity potential, The normal and the oblique inci-
dence of plane waves on the dock are considered, Coefficients of reflection and transi-
tion of the incoming waves are computed for the case of the normal incidence under the
condition that the width of the dock is large compared with the depth of the liquid,

The plane problem of diffraction of the surface waves at a dock of finite width was
dealt with by John [1] from the standpoint of the shallow water theory, and by Holford
[2] for the waves on a liquid of infinite depth,

Several papers [3—6] deal with spatial wave motions of a liquid in the presence of a
(rigid or elastic) dock occupying a halfwplane of the free surface, In [7, 8] the case of
a totally submerged dock is investigated, A variant of the Wiener~Hopf method [9] is
used in [3—8] to solve boundary value problems which the yelocity potential of the wave
motion of the liquid must satisfy,

1, A dock forming a rigid obstacle of width 2¢ is situated on the surface of liquid
and occupies the part of the free surface defined by { 2] <@, — o0 <Cz < oo, The
coordinate origin is situated at the bottom and the y-axis points vertically upwards,

Aplane wave pO)(p o 2 ¢} = DchCoy Ree t = (= Co* — k)
moving from infinity in the negative direction of the (z-axis is incident upon the dock
at a certain angle, Here & iCy are the roots of the equation BcosCh + sinCh = 0.
The velocity potential F (z, ¥, 2, f) describing the motion of the liquid due to the
incoming wave F(O (z, Yy, 2, t) should satisfy the Laplace equation AF (z, y, z, t)=

== () in the region occupied by the liquid and the following boundary conditions:

o2F Jot2 4 goF oy =0 for y="=h, |z|>8, —o0 Kz o0
oF joy=10 for y=-~, lz|<a, — o0 20
aF oy =0 for y=0, —oc0 Lz < o0, —o0 3L o

The motion of Haquid should satisfy the corresponding conditions at infinity and near
the edges of the dock (4= @, h). The latter condition is equivalent to the requirement
that 8F / 0t be bounded at the dock edges,

Function F (z, y, 2, t) is sought in the form

F(z, y, 2, t) = Re{[p(z, y) + D ch Coye-ix*] ¢l (iz-h} (1.1)
For ¢ (2, ¥) we obtain
Ap —ki=0 0Ly <k, — o0 Lz L )
dp/oy —Bp=10 for y=~h, |z|>e B=0%/g) (t.2)
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@) 0y = — DCysh Cohe = for y==h, |z|<a {cont,)
d¢ /oy =0 for y=0, —co< < 0
[o(z, y)|<M =const for r=V{EFa+@y—h —0
Eﬁ'ﬁ‘c @(z, y) = D, chCoye®=, lim ¢(z, y) = D_ch Coye-i®=

£~s—00

Wy =0, — it By = 0, -+ i1, . <0, 1,>0

In the final result t_and T, both tend to zero,

Applying the Fourier transformations to the problem (1.2) and utilizing the notation
o0 @€

D, (a0, y)= Rq; (z, yyerade, D(a, y)= Sq) (=, y)e*=dx

a

e’
—a

O_(y)= ol pereads, pP=atk
~—00
we obtain the following functional equation:

; ; 2DCqsh Coh sin (o —u)yachyh
D, (@)@ + Dy (@) K (o) + e P_(a)=— (T:jl'rh{i—*gﬂh'rh) @—x) (4.3)
a=g-it, 1. L1 <1, —o< 5L

Here @, () is an entire function, K () is regular, @, (&} is regular in the semi-
plane T> 1_,and @_ (a) is regular in the semiplane 7 <1,

- . vshyh
K(a)= v shyh —Bchyh
2DCssh Cohsin{x —x}a } ch 1y

(D (a» y) = {T Sg Tk [eixad)+ (G) *%_ ewi&ﬂ(’D“ (G)] - 1 Sh Th (Cl — x)

(1.4)
2, We use the approximate Wiener-Hopf method [10] to solve (1, 3),

We factorize [3—10] the function K (a) = K, (a) K_ (@)

R\ R — i gy " (A 4+ KR ) — 2k ) na
K () =i 2\ k2 po
Ho) =i <B> b+a A nl;:I (A2 fon ) — ixh [ o
P’ = R (8% + k%), K_(a) =K, (—a)
Here - po/h and == ip,/h are the roots of the equation pshpk — Bchpk = 0,
and p, = nx + B/ nn for n > 1.
Multiplying (1.3) by [ei*¢ K (a)]™ and by [e-1*¢K _(a)]™!, and using
O () ee =8 _(a), @ (a)e*e =5, (a)
we obtain the following two equations

o i P 2DC, sh CoheTH*% sin (3 —x) a ch th
—E g SoK= Frian _ T e 050 Lo it
Kt‘} oKz + e g K, (yshyh—Bch 1h) (@ — %)

One equation is obtained by taking the upper sign,and the second equation by taking
the lower sign, The first equation applies within the limits T. <7 <C0, and the
second equation within the limits § < v <71,

Taking into account the edge conditions (1.2) and applying the partition theorem
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( [9] Sect, 1, 3) together with the Liouville theorem to the above equations, we obtain
two following integral equations:

CHIF et )

D (), 1 _

ow o K OE—a %= @0

—oo-ich
DCysh Coh tiF e8¢ gin (£ — %) a ch nhdE
= D S K (€)[nsh nh —Bchnh](§ —x) (E —a)
—eotifp
< <v<0, T<[.<v<0, 0<Tr<Te, <7, 0o </, <y
0 = £ - k2

Choosing ! and m from (0,7,) ,setting C, = —C_ = [, f, = f_ = m, replacing

E by — & and @ by — o in the relevant equations of (2,1), we obtain

O (Ew) 4 “§°° D (T )
2ni

LW W ) KOETs T (22)
im-oo s
__ DCyshCoh § %% sin (£ -4- %) a ch nhdE
I g K_(E)(nshnh—Bchnh) (€ £ x) E+ )

In both of these equations 7> sup (- I, —m). We next introduce the functions
Gra)=®, (@) —P_(—0a), G (a) =, (a) + D_(—a) (2.3)

which are, in accordance with (2, 2), the solutions of integral equations

A e sigan A
G, (a)_'ti'}{f § et G, (&) d§= (2.4)

X, @ ) Toeta
__ DCyshCoh imim %% ch nh 78in (€ 4 %) a .. sin (£ —%) a] daE
T a ) K OaawfamEra L x| gox

In (2.4)and the following expressions the symbol A assumes respectively (+) or (—) sign,
Taking into account that

. yshyh
K, (o) K_(#) = w5yr—gehyh

we can write (2,4) as

ere . 1 il-l—goo G (8) e3¢ [yshnyh —Bchqh] K, (B) dt = (2.5)
K. @ ~2mi | nshnh €+ )

DC,sh Coh im+4-co %% ch K, (B) [sin E+na T sin (§ — %) a] &
= wi g nshnh (g + ) E47 E—x

The singularities of the integrand functions are poles
b =ik, iy B = K2+ 020 [P (n =1, 2,...)
Using the residue theory, we can write (2, 5) in the form
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LXCATC e AP 2 6. pne K, () _
) 55 ik+a B (pn + )

____ i2DCysh Coh{iK+(ik)[sin(ik+x)a$sxn(ik~x)a'l e-ka |-
= h okik +al ikt % ik— %

« 0
K. (pa)e " [sin(ipn-+%a sin(ip,—x)a
2 T [ Frmeraras S T I (2.6)

Rum=}

Setting now o = ik, ifi; (j = 1, 2,..), in (2. 6), we obtain at these points the fol-
lowing infinite algebraic systems for G * (a):

Apagn [ 14 BK, (ik) _ B %6 (ina) K, (sn)
G* (k) = {K+ (ik)ﬁ: 4kh 823‘1] {%:7{ :;1 Hn(@n‘?‘k)'} = -

8

2DCosh Coh [ 1 K, (ik) {sin (ik +-») a __sin(ik—x)a\ _
—T% [27; % ( w7 ik —=% )ek+

2 K, (i) e 7" (sin (ing +%)a e sin (fpy — %) aﬂ}

n (Bn -+ &) iy 4 % iy — %
m) 4 BER) Gk e | 2 6. ) e K (i)
+ () 2kh k+p; h = n (o + Bj)

sin{ik—«)a

~ka
= }e +

__2DCosh Co {_’i_ K, (ik) [sin (ik4-x)a T

h 2k k4 uy ik %

2 K, (ly‘n) e 'n° [‘sin (i +%) @ sin igin — %) a]}

n -+ Bj) ipn 4% I — %
(i=1,2,..1) (2.7)
which are fuIIy regular, when
BEK, (ewn S LN
gl K () (o g (2.8)
_ 243K, 1) <t g=t2e
(4K he* 4 BK 2 (K] (k + pn) (B + 1)

i.e, provided that the sum of the moduli of the coefficients in each row is less than
unity 111

The relation (2, 8) can be regarded as the condition defining the values of @ [ h, for
which the systems (2, 7) are regular, i, e, limiting value of the ratio @ / % up to which
the systems are fully regular can be obtained for each particular case,

When the conditions (2. 8) hold, the systems (2, 7) are fully regular and their free terms
are bounded, Consequently they have bounded solutions which can be obtained using the
method of consecutive approximations [11],

Having solved (2, 7) and using (2. 3), we can find @, (a) and O_ (@)-

3, Let us limit ourselves to the case 2a / A >> 1, i. e, assume that the width of the
dock exceeds the depth of the Hquid, The (2,6) yields the following expression for
G2 (a):
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G a) = —iK (a){ o B £ 6, i) ey DCysh Co (A lE 4

sin{ik—x)a . 2DCysh Coh < K, (ipn) ] gixa }
¥ ik —x )]+ ‘ h n§1 B Gpn 4 @) [il"n"*‘“?ipn““‘%] (31)

In this case (2,7) yields the following expression for G,* (ik) :

. 2DCosh Coh[ 1 Re~2F a1 (K, @) [sin @ik + %) a
G_&(lk)-:-—- oh [K (lk} =+ T%h K4(lk)] { i3 [ ik % +

sin ik —%)a] 4o . K, (i) [e’i’“‘ gixa
+ ik—x ] a+2 ton (Pn + ) iy,n-{-nq:ip,n-—x]}

Then, taking into account (2, 3) we obtain the following expressions for @, (&) and

@_(a) : N
®,(0) = — iK, () [ KRB CIH 6T oy

kh ik+a 2

sin {ik —u)a] . iDCysh Coh K, (ipy) e
-+ DCosh Coh ik—w ] + h 2 P'n(l}"n 4 a) ipn 7‘} (3.2)

O_(0 = — iK._ (oc){ aK (ak){’ _{}__G;(:‘k)g-t};(ik) ek

a

sin (zk—-%)a iDCosh Coh K () €%
+ DCosh Coh S2E—R 2] 1DCos 2 el @3

Applying the inverse Fourier transformation to (1, 4) and taking into account (3, 2)
and (3, 3), we obtain the solution of the problem (1.2} in the form
Hforxa << —a

@ (x, ¥) = (ap + iby) ch Coye-in{ - ‘K, (lk){ﬁ G,* (k) 4G~ (ik)

tk—3 2

. sin (ik — %) a iDCosh Coh K, (ithn) gixa }
DCOShCQh T ] T 2 Bn(lgn‘:ﬁﬁ) zp.n-—-»u —_

< s VX ka K+ k G++ ik G_‘_— ik
~p§1(ap+sz>ep cos B2Y {2 KL (h 8 G Godh

_ sin (ik —x) a] iDCo sh Coh K, (ip,) €@ }
DCosh Coh —r— ] Z ) P (o — Vp) T — (34

2) for |z| <a

(—1)" P
P‘n (n ﬁ2 il

¢(x, y) = 2DCohsh Cyh 2 1}:‘) [Hy 08 (ippr + %G) —

— xsin {ip,x -+ xa)] cos ";:u + kha {—2— [G,"(ik)yshkz + G~ (ik)chkz]
-+ M [k cos (ikx -+ ®a) — % sin (ikx 4-%a)] } De-*xch Coy  (3.5)
forz™>a
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G, (ik) — G.* (k)
P (x, y) = (a + ibo)"hcﬁyelsx{ 7 [g ‘ 3

sin (ik - %} &] iDCq sh Coh 2 K. (ipy) e ™ }
tht Z ' o G+ B B 0

— DCyshCsh

~ka s - d +
2 - opY K, (08 G () —G 2k
{ap + ibp)e  cos ’; { o &:vpl}-— +

2
p=1
sin (ik4- %) a iDCysh Coh K,y e }
— DCysh Cop 2L 2] 2000S S o vy i) (B9)
Here e
ke o Bpo’e
vp = [k pp2 RE ", @p + i = K5 5k @ —BF o) ch o

Bp ?evpa
%+ 1o = R,y vk Bh — B — 55 o8 op
Let now T_ and T, both tend to zero, Taking into account (3, 4),(3, 5), (3.6} and
(1.1) we obtain the final expression for the velocity potential, respectively, for the
departed wave, for the motion of the liquid under the dock, and for the reflected wave,

4, The case of normal incidence of the waves upon the dock (¢ = 0) must be con-
sidered separately for the following reason, The passage to the limit £ —> 0 is not pos-
sible in the solution obtained because for & = (), a double root appears in the kernel

o shak

K(a) = ashoah —Bchah
of the functional equation (1, 3). This violates the regularity of K (&) on the strip
T <t <T,— o0 <0<ooand K (@)=K, (@)K _(a)cannot be factorized in such a
manner that K, {¢) and K_ (@) are both regular and have no zeros within this strip,
We can overcome this difficulty as follows, The kernel K (a)accompanies on the strip
defined above the unknown entire function @, (&) as its coefficient; we can therefore
relate a? to O, (&) and write the functional equation (1. 3) for this case in the form

ix h ah .
el @, (a) + @y*(a) % (@sh :lhi—ﬁch ) - emia®_(a) =
2DC, sh Coh sin (o — x) ach ah
@shah —Behal(w—rn ' P (@) =0y (2)

Factorization of K* (a) yields

shah
K*(a) = o (o sh ¢k — B ch ah) = K,* (@) K_*(a)

oG
rN" i pgy 1 — iah/nx

* ) ms () e B0 T
K> (o) = <B) §-+a b Lt A —iak/py

K,_*(Gf-):—"K_F*(“‘"a}, pg;k:ngx‘xé
+po/h and +ip,/h are roots pthph =7

Equations (2, 1) can now be written as
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00+4-¢ a
PR N .~ T R
K, * (@)~ 2mu KO E—
—ccic
oc-if! _
DCqsh Coh S+ ¥ in (£ — %) a ch ERdE s

* w . K, *(€) (EshEr —Bch&h) E—x) E—2) +

-OO+1}':F

where B, and B_ are constants to be determined from the boundary conditions [9].
Assurmning 2q [/ h S>> 1, we obtain the following expression for G} (@) fork = 0:

GHay=K *(a){B 4+ B_ — DCyshCoh 2 !'m:;)

mst—;—ah * \ h

e—IKG, ema
X {inn-}-nh%: inm — ®h }

Repeating the multiplications performed previously, we obtain the required solution
in the form

FW(z, y, t)=|(To + iRo) ¥, (— 8)| ch Coy cos (wz — wt) +

-+ 2 HTp -+ iRy, (— ivp) | cos vpy cos ot

a FO(z,y, t)=
:ﬂDshCoh é&%lem (K20 (ﬁ)’*“]‘(‘“’g((%))’““’*‘{)}"‘-"(“?] N
e
(= 252 o =] — 2| -

— 2DCohsh Coh 2 il exp 2 gos oL M} cos ot

nr R R Vww okt

F‘”(a:, y.ty=D{1+ To+ iRYP-(B) ¢h Cyy cos (nx 4+ of) 4~
1) (

+ Z |(Tp + iRp) b_(ivp) | € cos vyy cos wt

=1
where iBoe—id0
s iBpoe =
TO + I‘BO 8 (Bh — B2R% - py?) ch po K+‘" (8) + Vp=Pp / h
iR, — Bope P _ o _ O
TP e Z‘RP T vpt (Bh — B —pg?) cos ppK * (ivp) A (d‘) - K_:‘ o (d.) - K *

B, =i 3OO peshcen Z LAY ("Z,n)—

— 4 i \
__ [aK,* () iK,* ()] D sh Cohsinxa __zDsh Cng: 0} (a 08 AE — sinxa \
ah 2ah ® )
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~ixa

< i ixa s
B.= DshCoh {Co n§1 K"'* (_l%t—) {ix; —nn ixif—l—- nn:l - 2K+* (O) sn_n_h_ua_} - B+

The coefficients of reflection and transition of the waves are given by the formulas

2], _|FO]_ [(To+ iR ¥, (—0)] _ D)@k iRy 6) | 4
T RO T D YN D

’

where |F®|, | FG)| and | F® | denote the amplitudes of the reflected, departed and
incident waves, respectively,
The pressure of liquid under the dock is given by
(2)
play t)y=—p 2l Gnl 4,
Computation (in MKS system) of the pressure distribution along the x-axis for the
parameter values

D =020m¥sec, h=1m, a =2m, ® = 4.34sec”, % =2ml, ¢t =1sec
gave the following results:

r= -2 —1 0 1 2

p= —250 0 67 144 230

These data indicate that the pressure change is larger near the right hand side edge,
i.e, the dock dampens the waves, In this case f, = 0.5 and f, = 0.86. It shoald be
noted that according to the results of [1] the pressure under the dock varies linearly,
while the pressure distribution investigated in the present paper is nonlinear, This is
explained by the fact that in the present paper we consider the hydrodynamic pressure
as opposed to the hydrostatic pressure in [1],

The author thanks A, A, Kaspar'iants for his constant interest and guidance in this work.
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THE PROPAGATION OF SMALL PERTURBATIONS

IN A VISCOELASTIC FLUID

PMM Vol, 34, N1, 1970, pp. 41-56
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The propagation of small-amplitude waves is investigated in an incompressible visco~
elastic fluid, the rheological behavior of which is described by a nonlinear differential-
operator equation of state,

Waves in a linear viscoelastic medium have been discussed in detail in [1, 2], In this
paper, we consider the models of Oldroyd [3] and de Witt [4], and the generalizations of
these models for the case of the finite spectrum of the times of relaxation and retarda-
tion, For the stated models an invariant formulation is adduced for the conditions of
evolutionarity of a system of hydrodynamic equations, Possible types of short transverse
waves are esteblished for media which possess transient elasticity, The phase polars and
group polars of a point source are considered, The local characteristics are adduced for
high-frequency transverse waves in the case of reflection and refraction at the boundary
of an Oldroyd fluid with a linearly elastic solid,

Small perturbations are considered for the presence in the fluid of a stressed state which
is different from the hydrostatic pressure,

1. Formulation of the conditions for evolutionarity of the
hydrodynamic equations of models possessing a finite set of
relaxation and retardation times, The system of dynamic equations for an
incompressible viscoelastic fluid consists of the equation of continuity

divv =20 (1.1)
the equations of momenta
pdvjdt = —Vp+divT 4 pF (1.2)
and the tensor equation of state
D D
P,(W>T= 2an(ﬁ)E (1.3)

In Eq, (1.3), T is the tensor of "viscoelastic” stresses, E is the tensor of the rate of
deformation; P.(D /Dt) and Q, (D /Dt) are differential operators representing poly-~
nomials of D/Dt , s D

D D D\ __ 2
Pr(ﬁ)=.ﬂl<1+’“*ﬁ7>' Q’('DT)”‘H(”O‘ o) 44
i= =

The quantities A;and 0; form relaxation and retardation spectra, respectively. The
symbol DA/Dt denotes the relative convective derivative of the tensor A defined by



